

Effect of methionine sulfoxide reductase B1 (SelR) gene silencing on peroxynitrite-induced F-actin disruption in human lens epithelial cells

Yi Jia, Jun Zhou, Hongmei Liu, Kaixun Huang*

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan 430074, People's Republic of China

ARTICLE INFO

Article history:

Received 25 November 2013

Available online 14 December 2013

Keywords:

Methionine sulfoxide reductase B1

Human lens epithelial cells

Peroxynitrite

F-actin

Extracellular signal-regulated kinase

ABSTRACT

F-actin plays a crucial role in fundamental cellular processes, and is extremely susceptible to peroxynitrite attack due to the high abundance of tyrosine in the peptide. Methionine sulfoxide reductase (Msr) B1 is a selenium-dependent enzyme (selenoprotein R) that may act as a reactive oxygen species (ROS) scavenger. However, its function in coping with reactive nitrogen species (RNS)-mediated stress and the physiological significance remain unclear. Thus, the present study was conducted to elucidate the role and mechanism of MsrB1 in protecting human lens epithelial (hLE) cells against peroxynitrite-induced F-actin disruption. While exposure to high concentrations of peroxynitrite and gene silencing of MsrB1 by siRNA alone caused disassembly of F-actin via inactivation of extracellular signal-regulated kinase (ERK) in hLE cells, the latter substantially aggravated the disassembly of F-actin triggered by the former. This aggravation concurred with elevated nitration of F-actin and inactivation of ERK compared with that induced by the peroxynitrite treatment alone. In conclusion, MsrB1 protected hLE cells against the peroxynitrite-induced F-actin disruption, and the protection was mediated by inhibiting the resultant nitration of F-actin and inactivation of ERKs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Actin is a protein that exists in three isoforms (α , β , and γ) and in various states ranging from monomeric globular actin (G-actin) to polymeric filamentous actin (F-actin) [1,2]. F-actin plays a crucial role in fundamental cellular processes [3]. Actin also belongs to a group of proteins that are targeted for calpain mediated degradation in different types of experimental cataract [4,5]. Based on the result of actin-related globular degeneration, Mousa et al. speculated that it might be a contributing factor in cortical cataractogenesis [6].

Abbreviations: bFGF, basic fibroblast growth factor; DMEM, Dulbecco's Modified Eagle's Medium; ECL, enhanced chemiluminescence; ERK, extracellular signal-related kinase; F-actin, filamentous actin; G-actin, globular actin; hLE, human lens epithelial; MAPK, mitogen-activated protein kinase; MetO, methionine sulfoxide; MEK, mitogen-activated protein kinase kinase; Msr, methionine sulfoxide reductase; NCS, newborn calf serum; PBS, phosphate-buffered saline; RNS, reactive nitrogen species; ROS, reactive oxygen species; RT, room temperature; SelR, selenoprotein R; siRNA, short interfering RNA; T-TBS, tris-buffered saline with Tween.

* Corresponding author. Fax: +86 27 8754 3632.

E-mail addresses: jiayiyouxiang@163.com (Y. Jia), hxxzrf@hust.edu.cn (K. Huang).

0006-291X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.

<http://dx.doi.org/10.1016/j.bbrc.2013.12.055>

The ERK signaling pathway is a major determinant in the control of diverse cellular processes [7]. Previous studies have indicated that F-actin may provide a scaffold for ERK signaling complexes [8,9]; and ERK1/2 activation mediates the formation of F-actin, whereas depolymerizing F-actin increased pERK1/2 expression [10]. However, Yang et al. reported that disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and stabilizing actin prevented dephosphorylation of ERK [11]. Nevertheless, mechanisms for the interactions between pERK1/2 and F-actin are not well understood.

Peroxynitrite (ONOO^-) is the reaction product of superoxide (O_2^-) and nitric oxide (NO). The molecule rapidly breaks down at physiological pH to yield hydroxyl radical ($\cdot\text{OH}$) and nitrogen dioxide radical ($\cdot\text{NO}_2$) [12]. As a potent oxidant and nitrating species, peroxynitrite is proposed to be an effector of cell damage in diabetic cataract [13], by oxidizing and/or nitrating biological molecules including proteins, lipids, and DNA [14,15]. The ONOO^- -induced nitration of actin protein can result in depolymerization of F-actin [16–18]. Furthermore, ONOO^- oxidizes methionine (Met) residues of proteins to methionine sulfoxide (MetO) [19,20], and this oxidation may interfere a multitude of biological functions through direct inactivation of relevant proteins [21,22]. Recent evidence suggests that Mical (an actin disassembly factor) can

regulate F-actin assembly and disassembly by the oxidation of Met 44 residue within the D-loop of actin [23]. Oxidation of critical Met residues can inhibit actin polymerization and destabilizes F-actin [24]. Unlike most protein modifications, MetO can be converted back to Met through the action of a class of enzymes known as methionine sulfoxide reductases (Msrs) [25]. Mammals have two forms of Msrs: MsrA and MsrB catalyze the thioredoxin-dependent reduction of S-MetO and R-MetO derivatives to Met [26], respectively. MsrB1 is a selenoprotein named selenoprotein R (SelR), and is localized in the cell nucleus and cytosol [19,27]. MsrB1 is widely distributed throughout different tissues of mammals [11,27]. Previous studies by Marchetti et al. [21] and our group [28,29] demonstrated that MsrB1 could serve as a ROS scavenger and inhibit ONOO[−]-induced apoptosis of human lens epithelial cells (hLEC). However, its potential role in protection against ONOO[−] and in protecting the F-actin assembly in hLE cells exposed to various doses of peroxynitrite remains largely unknown.

To explore the cytoprotection of MsrB1 against ONOO[−]-induced damage in hLE cells, here, we preliminarily examined the effect of ONOO[−] on ERK phosphorylation and the regulation of pERK1/2 expression on F-actin assembly in cultured hLE cells before and after MsrB1 gene silencing by RNAi.

2. Materials and methods

2.1. Reagents

Dulbecco's Modified Eagle's Medium (DMEM) and newborn calf serum (NCS) were obtained from Gibco BRL (Gaithersburg, MD). Penicillin G and streptomycin sulfate were purchased from Amresco. Lipofectamine 2000 was obtained from Invitrogen. Protease inhibitor cocktail was purchased from Sigma Co. (St. Louis, MO). Recombinant human basic fibroblast growth factor (bFGF) was obtained from Peprotech (Rocky Hill, CT). All other reagents were of analytical or biochemical reagents.

ONOO[−] was synthesized from sodium nitrite and acidic hydrogen peroxide as previously described [30], and excess hydrogen peroxide was removed by treatment with MnO₂. Concentration of ONOO[−] was determined spectrophotometrically at 302 nm ($\epsilon = 1670 \text{ M}^{-1} \text{ cm}^{-1}$).

2.2. Cell culture and treatment with ONOO[−]

The hLE cells (SRA01/04, ScienCell, Carlsbad, CA) [25] were cultured in DMEM medium supplemented with 10% (v/v) heat-inactivated NCS and antibiotics (penicillin, 100 U/mL; streptomycin, 100 µg/mL) at 37 °C in the presence of 5% CO₂. Before experimentation, cells at approximately 80% confluence were serum-starved for 24 h, washed twice with phosphate-buffered saline (PBS), and subsequently placed in modified PBS (50 mM Na₂HPO₄, 90 mM NaCl, 5 mM KCl, 0.8 mM MgCl₂, 1 mM CaCl₂, and 5 mM glucose, pH 7.4). To avoid increases in pH, ONOO[−] was added at a maximum volume of 1% of the culture to yield the given final concentrations. The cells were incubated for 20 min at 37 °C, then were washed, incubated with culture medium, and maintained for the additional time required for each experiment. In control experiments, cells were treated with aliquots of ONOO[−] stock solutions that were allowed to decompose completely by overnight (vehicle control) [31,32].

2.3. MsrB1 RNA interference

Double-stranded short interfering (si) RNAs specifically designed for MsrB1 were 5'-GCGUCCGGAGCACAAUAGATT-3' (sense) and 5'-UCUAUUGUGCUCCGGACGCTT-3' (antisense) [21], and for

the negative control were 5'-UUCUCCGAACGUGUCACGUU-3' (sense) and 5'-ACGUGACACGUUCGGAGAATT-3' (antisense). The siRNA fragments were synthesized by Shanghai GenePharma (Shanghai, China).

The hLE cells were plated in 6-well plates or 60 mm plates, grown until 70–80% confluence, then transfected with siRNA and Lipofectamine 2000 according to the manufacturer's instructions. At 24 h after the transfection, the cells were treated with various concentrations of ONOO[−] and incubated with fresh serum-free media for 1 h or 24 h before being harvested for analysis.

2.4. Inhibition test

U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenyl]mercapto)butadiene; Beyotime, China) was used as a highly selective inhibitor of both mitogen-activated protein kinase kinase (MEK1/2) and ERK1/2. In all inhibition test, 25 µM U0126 was added at 1 h before the addition of bFGF or ONOO[−]. The inhibitor was added to the culture one more time during the culture period. The control dishes were supplemented with an equivalent volume of solvent dimethylsulfoxide [7].

2.5. Immunofluorescence and confocal microscopy

The hLE cells were plated on 20-mm glass bottom cell culture dish, and grown to confluence at 37 °C. After treatment with ONOO[−], the cells were treated as reference [2], washed with PBS, fixed with 3.7% formaldehyde solution at room temperature (RT) for 20 min and then permeabilized with 0.1% Triton X-100 in PBS at RT for 15 min. The cells were washed with PBS and then blocked in 10% NCS at RT for 1 h. F-actin was stained with FITC-Phalloidin (Enzo Life Sciences, Farmingdale, NY) at RT for 1 h and washed sufficiently. The cells were imaged with a Zeiss LSM 510 laser scanning confocal microscope (Carl zeiss, Jena, Germany).

2.6. Immunoprecipitation and Western blot analysis

The cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% Triton X-100, 1 mM NaF, 1 mM Na₃VO₄, 1 mM EDTA, 10 µL/mL protease inhibitor cocktail P8340). Soluble proteins were separated on 10% polyacrylamide gels and blotted onto a nitrocellulose membrane. Subsequently, the membranes were incubated with specific antibodies against target protein (GAPDH, ERK1/2 and phospho-ERK1/2 (Tyr 204) (Santa Cruz Biotechnology, Dallas, TX); F-actin (Xing Xing Tang Biotechnology, Beijing, China); nitrotyrosine antibody (Millipore, Billerica, MA)), and antigen-antibody complexes were visualized by enhanced chemiluminescence.

For immunoprecipitation experiments, hLE cell lysates containing 0.5 mg of total protein were incubated with 4 µg of anti-F-actin for 1 h at 4 °C. After collection on protein A/G plus-Agarose, the immune complexes were washed three times with lysis buffer, boiled in Laemmli buffer for 5 min, and thereafter subjected to Western blotting analysis.

2.7. Statistical analysis

All data were expressed as mean ± SD. The statistical significance of difference between groups was evaluated using analysis of variance (ANOVA) followed by Tukey test for multiple comparisons, and a *P* value less than 0.05 was considered statistically significant.

3. Results

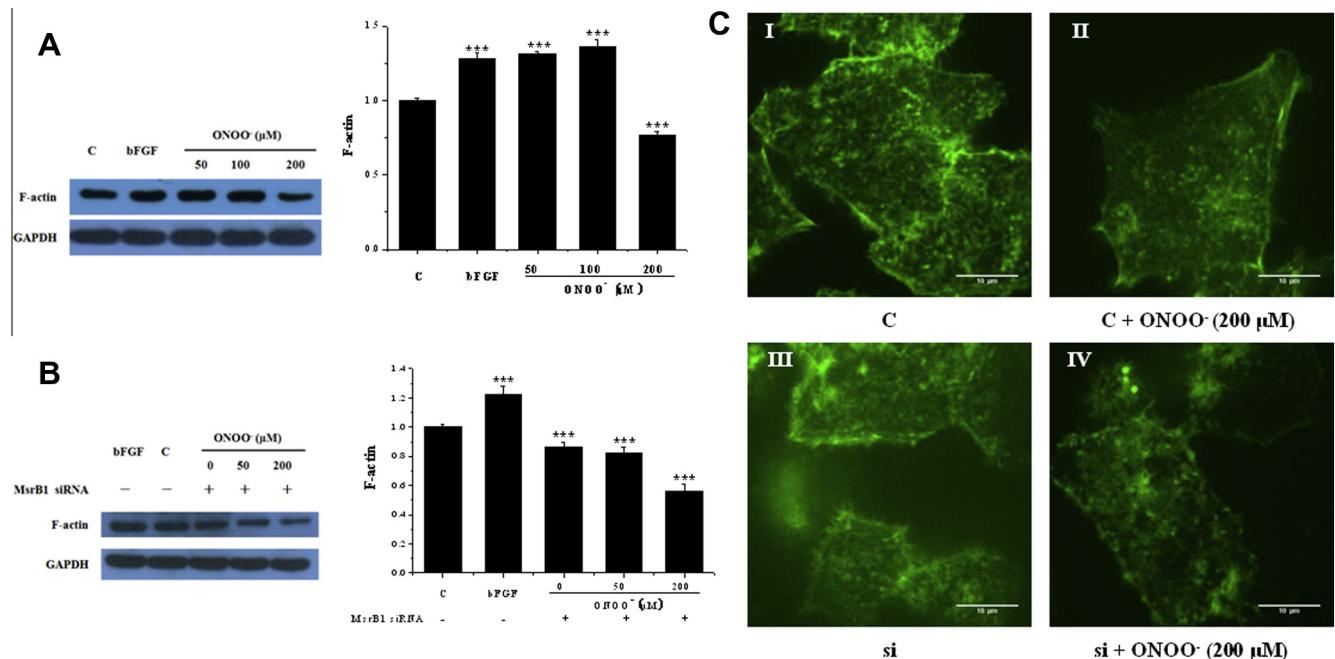
3.1. Effect of the ONOO^- exposure and the *MsrB1* gene silencing on assembly of F-actin

To investigate effects of the *MsrB1* gene silencing on disassembly of F-actin induced by ONOO^- , at first, we detected the effect of different concentrations of ONOO^- on F-actin protein levels. After hLE cells were exposed to low concentrations of ONOO^- (50 or 100 μM) for 1 h (Fig. 1A), the levels of F-actin protein were increased, indicating that low concentrations of ONOO^- actually induced the assembly of F-actin. The increase of F-actin level was almost same as that of treating with 40 ng/mL bFGF. Seemingly, low concentrations of ONOO^- had bFGF-like effect. In contrast, the levels of F-actin protein were decreased to the level lower than the control after hLE cells were exposed to 200 μM ONOO^- for 1 h. Thus, there was a bidirectional effect of ONOO^- on the expression of F-actin protein.

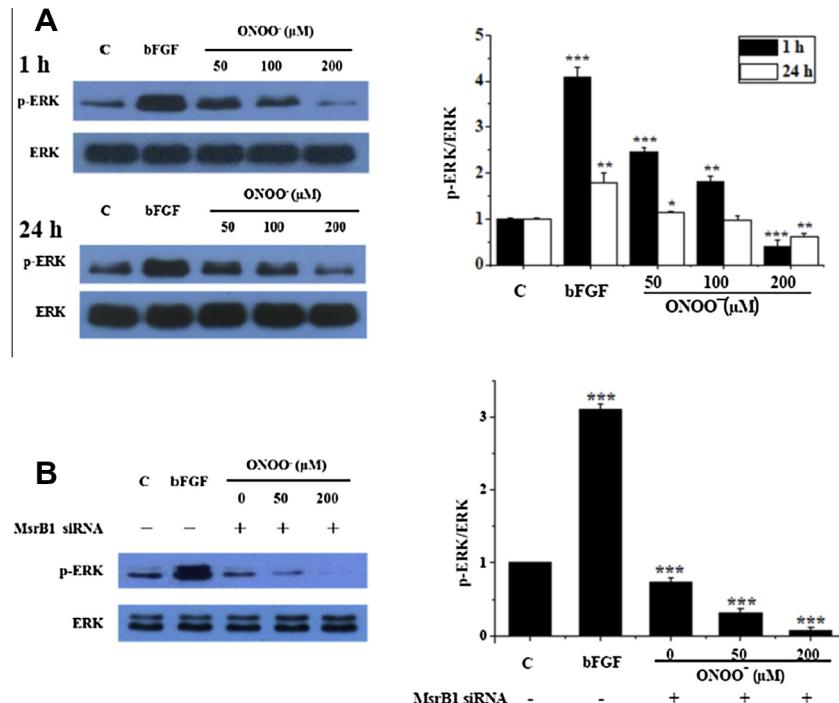
After hLE cells were transfected with *MsrB1* siRNA (Fig. 1B), level of F-actin was decreased by 15%, compared with the vehicle control. After *MsrB1*-gene-silenced hLE cells were exposed to low or high concentrations of ONOO^- , the bidirectional effects disappeared. The level of F-actin protein was decreased by 18% and 44%, respectively.

To explore the effects of ONOO^- on cytoskeletal assembly, we examined the structures of F-actin in hLE cells using FITC-phalloidin staining. Representative micrographs obtained by confocal immunofluorescence microscopy were shown in Fig. 1C. While the vehicle control showed the typical, fine weblike network of cellular actin (Fig. 1C(I)), F-actin in the cells treated with ONOO^- or transfected with *MsrB1* siRNA displayed a defective disassembly (Fig. 1C(II) and (III)). Moreover, when hLE cells were transfected with *MsrB1* siRNA and then exposed to 200 μM ONOO^- for 1 h, the F-actin was partially disintegrated and total staining actin was obviously decreased (Fig. 1C(IV)).

3.2. Effects of bFGF and ONOO^- on ERK activation or inactivation


As shown in Fig. 2A, after hLE cells were exposed to low concentration of ONOO^- (50 μM) for 1 h, level of p-ERK1/2 was increased to the level similar to that treated with bFGF for 1 h. The level of p-ERK1/2 was gradually decreased with increase of concentration of ONOO^- . When hLE cells were exposed to 200 μM ONOO^- for 1 h, the level of p-ERK1/2 was decreased by 60%. A similar change was observed after hLE cells were exposed to 200 μM ONOO^- for 24 h.

To evaluate the influence of *MsrB1* gene silencing on ERK signal pathway, we also determined the levels of p-ERK1/2 before and after *MsrB1* gene silencing in hLE cells. As shown in Fig. 2B, the level of p-ERK1/2 in *MsrB1*-gene-silenced cells was 75% of the control. When these *MsrB1*-gene-silenced cells were exposed to 50 μM ONOO^- , level of p-ERK1/2 was not up-regulated, compared with the wild-type control group treated with the same concentration of ONOO^- (Fig. 2A), but the level was about 31% of normal cells. When *MsrB1*-gene-silenced cells were exposed to 200 μM ONOO^- , level of p-ERK1/2 was only 10% of the vehicle control cells, or 25% of the control cells treated with the same concentration of ONOO^- .


U0126 is an inhibitor of MEK and was used to explore if the effect of ONOO^- was mediated by activating ERK1/2. As shown in Fig. 3, treating hLE cells with U0126 blocked the ERK1/2 phosphorylation in both control group and bFGF-treated group, indicating that bFGF-activated ERK1/2 phosphorylation was dependent on MEK activity. In contrast, the up-regulation of ERK1/2 phosphorylation by ONOO^- (50 μM) was not blocked by the same MEK inhibitor, indicating that ONOO^- activated ERK1/2 via a MEK-independent pathway.

3.3. Correlation between loss of F-actin and nitration of F-actin

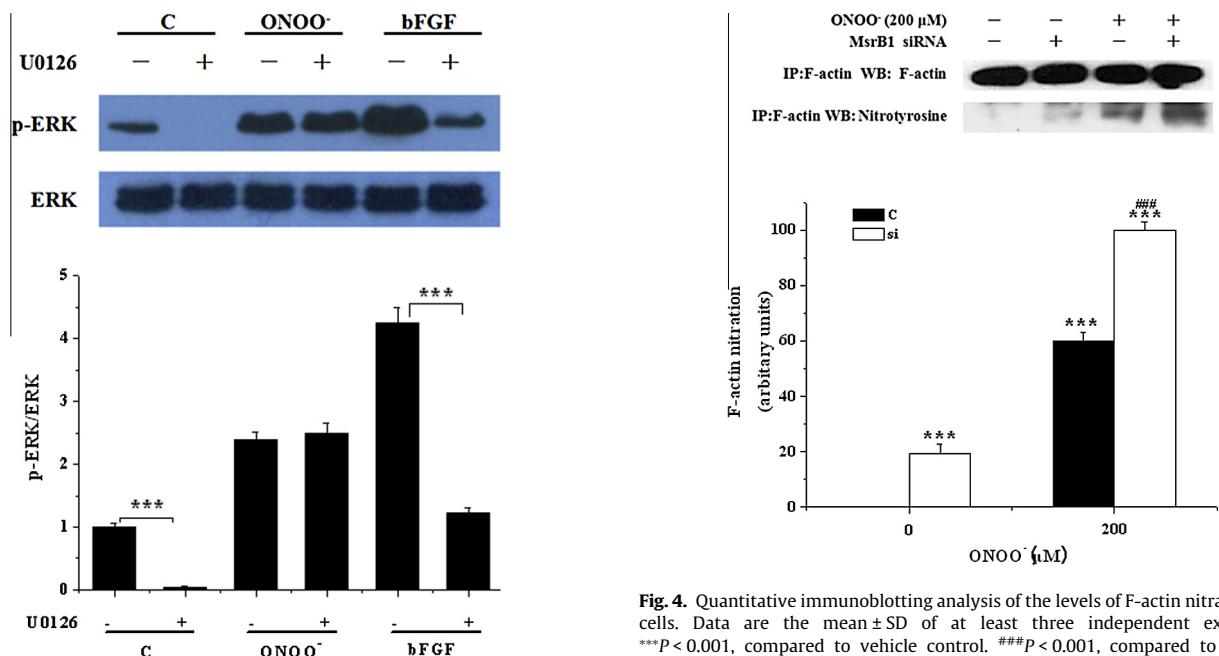

To reveal the mechanism for *MsrB1* gene silencing effect on ONOO^- -induced F-actin disassembly, we determined the level of

Fig. 1. ONOO^- induced assembly or disassembly of F-actin before and after *MsrB1* gene silencing in hLE cells. (A, B) Influence of ONOO^- on the assembly or disassembly of F-actin before and after *MsrB1* gene silencing. (C) Fluorescent staining of the F-actin cytoskeleton assessed by laser scanning confocal microscope in hLE cells, Scale bar, 10 μm . Data are the mean \pm SD of at least three independent experiments. *** $P < 0.001$, compared to vehicle control. C, vehicle control; bFGF, the group treated with bFGF.

Fig. 2. Effect of different concentrations of ONOO⁻ on ERK1/2 phosphorylation before and after MsrB1 gene silencing in hLE cells. (A) ONOO⁻ induced a dose- and time-dependent manner in ERK1/2 phosphorylation. (B) Effect of MsrB1 gene silencing on the ONOO⁻-induced ERK1/2 phosphorylation. Data are the mean \pm SD of at least three independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001, compared to vehicle control. C, vehicle control; bFGF, the group treated with bFGF.

Fig. 3. bFGF mediated ERK1/2 phosphorylation via a MEK-dependent pathway and ONOO⁻ activated ERK1/2 via a MEK-independent pathway. Data are the mean \pm SD of at least three independent experiments. *** P < 0.001, compared to the group without treatment of U0126. C, vehicle control; ONOO⁻, the group treated with ONOO⁻ (50 μM); bFGF, the group treated with bFGF (40 ng/mL).

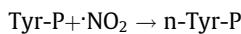
F-actin nitration using immunoprecipitation and Western blot. As shown in Fig. 4, the level of F-actin nitration in MsrB1-gene-silenced cells and those treated with 200 μM ONOO⁻ for 1 h was increased. Furthermore, after the vehicle control cells were treated with both MsrB1 siRNA and 200 μM ONOO⁻, the level of F-actin

Fig. 4. Quantitative immunoblotting analysis of the levels of F-actin nitration in hLE cells. Data are the mean \pm SD of at least three independent experiments. *** P < 0.001, compared to vehicle control. # P < 0.001, compared to the group treated with ONOO⁻ alone.

nitration was elevated to 5.2-fold of that in MsrB1-gene-silenced cells and 1.7-fold of that in ONOO⁻-treated cells.

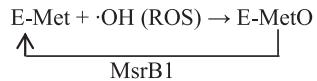
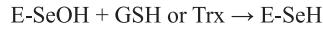
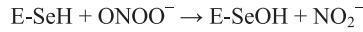
4. Discussion

MsrA has been shown to play an important role in protecting lens cells against oxidative damage and to be required for the maintenance of lens transparency *in vivo* [33,34]. MsrB1, as a selenoprotein, is also important for lens cell in coping with oxidative


stress and potentially cataractogenesis [21]. Our previous study [28] proved that MsrB1 gene silencing elevated ROS level and aggravated ONOO^- -induced apoptosis in hLE cells. In this study, when MsrB1-gene-silenced hLE cells were exposed to ONOO^- , levels of F-actin protein and pERK/ERK were further decreased, and the bidirectional effects of peroxynitrite no longer existed. Consequently, the F-actin cytoskeleton was partially disintegrated and total staining actin was obviously decreased. These results suggest that MsrB1 plays important roles in protecting hLE cells against peroxynitrite-induced nitration of F-actin and damage of cytoskeleton via regulating ERK signaling pathway through balancing ERK1/2 phosphorylation.

ONOO^- is a potent RNS that plays crucial roles in the physiologic regulation of important biological processes such as proliferation and differentiation [35]. Our results from the present study showed a dose-dependent, dual role of ONOO^- on the expression of F-actin. Specifically low concentrations of ONOO^- induced assembly of F-actin, whereas high concentrations of ONOO^- attenuated the assembly. This finding is consistent with our previous observation of bidirectional effects of ONOO^- on insulin signaling in HepG2 cells [32] and the survival and proliferation of hLE cells [28].

MAPK/ERK1/2 signaling pathways is required for FGF-induced lens cell differentiation [7,36] and F-actin also plays an important role in this process [3]. In the present study, we demonstrated that low concentrations of ONOO^- activated ERK1/2, but high concentrations of ONOO^- inhibited ERK1/2 activation. These opposite responses of ERK1/2 to low and high concentrations of ONOO^- were in parallel with their induced impacts on assembly or disassembly of F-actin (Figs. 1A and 2A). Similarly, Liaudet et al. revealed that low concentration of ONOO^- activated tyrosine phosphorylation and high concentration of ONOO^- inhibited tyrosine phosphorylation [37]. Activation of ERK by ONOO^- has also been shown in rat-1 fibroblasts [38] and H9C2 cardiomyocytes [39]. However, these studies did not illustrate the bidirectional effects of ONOO^- on ERK phosphorylation. This discrepancy from the present study might be related to the experimental conditions including the ONOO^- exposure dose by time and the cell types.




Recent evidences suggested that ONOO^- -induced depolymerization of F-actin was associated with increased nitrotyrosine [16–18,40,41]. Therefore, Maneen and Cipolla conjectured that the mechanism for causing disruption of the normal state of F-actin and subsequent depolymerization was possibly attributed to the nitrotyrosine formation-mediated structural/conformational changes of F-actin [17]. Our results indicate that disruption of F-actin was accompanied by increase in F-actin nitration (Figs. 1 and 4). Furthermore, our results reveal that bFGF activated ERK1/2 phosphorylation via an MEK-dependent pathway, whereas low concentrations of ONOO^- activated ERK1/2 phosphorylation via an MEK-independent pathway (Fig. 3). The latter may be mediated by activation of a calcium-dependent PKC [38].

It is well known that in physiological condition peroxynitrite may be decomposed into hydroxyl radical, a strong oxidizing agent, and nitric oxide radical, a strong nitrating agent:

In present study, when MsrB1-gene-silenced hLE cells were exposed to ONOO^- , the nitration of F-actin was further increased. Meanwhile, inhibition of ERK1/2 phosphorylation and disassembly of F-actin were further aggravated. All these collective findings prompt us to speculate that the selenocysteine-containing MsrB1 might act as a peroxynitrite reductase in preventing the induced oxidation and nitration reactions with ERK or F-actin. This function

may be carried out by directly or indirectly scavenging RNS and ROS:

In summary, both high concentrations of ONOO^- and MsrB1 gene silencing accelerated disassembly of F-actin and induced inactivation of ERK in hLE cells. Furthermore, MsrB1 gene silencing aggravated disassembly of F-actin by ONOO^- through increase of nitration of F-actin and inactivation of ERK. Overall, MsrB1 played important roles in protecting hLE cells against ONOO^- -induced F-actin disruption, and part of the mechanism was via inhibiting nitration of F-actin and inactivation of ERK. However, a complete understanding of the mechanisms needs further research studies.

Acknowledgments

We sincerely thank Dr. Xingen Lei's suggestion and revision when we prepared this manuscript. We thank the faculty from Analytical and Testing Center of Huazhong University of Science and Technology for their help. This research was supported by the National Natural Science Foundation of China (funded project No. 21271077).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at <http://dx.doi.org/10.1016/j.bbrc.2013.12.055>.

References

- [1] P. Sheterline, J.C. Sparrow, *Actin, Protein Profile 1* (1994) 1–121 [PubMed: 8528900].
- [2] P. Neumann, N. Gertzberg, E. Vaughan, J. Weisbrodt, R. Woodburn, W. Lambert, A. Johnson, *Peroxynitrite mediates TNF- α -induced endothelial barrier dysfunction and nitration of actin*, *Am. J. Physiol. Lung Cell. Mol. Physiol.* 290 (2006) L674–L684 [PubMed: 16284212].
- [3] P.V. Rao, R. Maddala, *The role of the lens actin cytoskeleton in fiber cell elongation and differentiation*, *Semin. Cell Dev. Biol.* 17 (6) (2006) 698–711 [PubMed: 17145190].
- [4] J.I. Clark, H. Matsushima, L.L. David, J.M. Clark, *Lens cytoskeleton and transparency: a model*, *Eye* 13 (Pt. 3b) (1999) 417–424 [PubMed: 10627819].
- [5] F. Kilić, J.R. Trevithick, *Modelling cortical cataractogenesis. XXIX. Calpain proteolysis of lens fodrin in cataract*, *Biochem. Mol. Biol. Int.* 45 (5) (1998) 963–978 [PubMed: 9739461].
- [6] G.Y. Mousa, M.O. Creighton, J.R. Trevithick, *Eye lens opacity in cortical cataracts associated with actin-related globular degeneration*, *Exp. Eye Res.* 29 (4) (1979) 379–391 [PubMed: 574459].
- [7] Q. Wang, R. Stump, J.W. McAvoy, F.J. Lovicu, *MAPK/ERK12 and PI3-kinase signalling pathways are required for vitreous-induced lens fibre cell differentiation*, *Exp. Eye Res.* 88 (2009) 293–306 [PubMed: 18938158].
- [8] B.D. Leinweber, P.C. Leavis, Z. Grabarek, C.L.A. Wang, K.G. Morgan, *Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins*, *Biochem. J.* 344 (1999) 117–123 [PubMed: 10548541].
- [9] R.E. Harrison, B.A. Sikorski, J. Jongstra, *Leukocyte-specific protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1 and ERK2 to the actin cytoskeleton*, *J. Cell Sci.* 117 (2003) 2151–2157 [PubMed: 15090600].
- [10] Y.F. Wang, G.I. Hatton, *Interaction of extracellular signal-regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: role in burst firing*, *J. Neurosci.* 27 (50) (2007) 13822–13834 [PubMed: 18077694].
- [11] C. Yang, K. Patel, P. Harding, A. Sorokin, W.F. Glass, *Regulation of TGF- β 1/MAPK-mediated PAI-1 gene expression by the actin cytoskeleton in human mesangial cells*, *Exp. Cell Res.* 313 (6) (2007) 1240–1250 [PubMed: 17328891].

[12] J.S. Beckman, T.W. Beckman, J. Chen, P.A. Marshall, B.A. Freeman, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide, *Proc. Natl. Acad. Sci. USA* 87 (1990) 1620–1624 [PubMed: 2154753].

[13] K.V. Dyke, E. Ghareeb, M.V. Dyke, A. Sosa, R.D. Hoeldtke, D.H. Van Thiel, Luminescence experiments involved in the mechanism of streptozotocin diabetes and cataract formation, *Luminescence* 23 (2008) 386–391 [PubMed: 18651583].

[14] G.E. Artee, K. Briviba, H. Sies, Protection against peroxynitrite, *FEBS Lett.* 445 (1999) 226–230 [PubMed: 10094462].

[15] S.E. Pollard, M. Whiteman, J.P.E. Spencer, Modulation of peroxynitrite-induced fibroblast injury by hesperetin: a role for intracellular scavenging and modulation of ERK signaling, *Biochem. Biophys. Res. Commun.* 347 (2006) 916–923 [PubMed: 16857166].

[16] A. Banan, J.Z. Fields, Y. Zhang, A. Keshavarzian, iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers, *Am. J. Physiol. Gastrointest. Liver Physiol.* 280 (2001) G1234–G1246 [PubMed: 11352817].

[17] M.J. Maneen, M.J. Cipolla, Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin, *Am. J. Physiol. Heart Circ. Physiol.* 292 (2007) H1042–H1050 [PubMed: 17040976].

[18] M. Aslan, T.M. Ryan, T.M. Townes, L. Coward, M.C. Kirk, S. Barnes, C.B. Alexander, S.S. Rosenfeld, B.A. Freeman, Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization, *J. Biol. Chem.* 278 (2003) 4194–4204 [PubMed: 12401783].

[19] L.S. Nakao, L.K. Iwai, J. Kalil, O. Augusto, Radical production from free and peptide-bound methionine sulfoxide oxidation by peroxynitrite and hydrogen peroxide/iron(II), *FEBS Lett.* 547 (2003) 87–91 [PubMed: 12860391].

[20] S. Lancellotti, V.D. Filippis, N. Pozzi, F. Peyvandi, R. Palla, B. Rocca, S. Rutella, D. Pitocco, P.M. Mannucci, R. De Cristofaro, Formation of methionine sulfoxide by peroxynitrite at position 1606 of von Willebrand factor inhibits its cleavage by ADAMTS-13: a new prothrombotic mechanism in diseases associated with oxidative stress, *Free Radic. Biol. Med.* 48 (2010) 446–456 [PubMed: 19969076].

[21] M.A. Marchetti, G.O. Pizarro, D. Sagher, C. DeAmicis, N. Brot, J.F. Hejtmancik, H. Weissbach, M. Kantorow, Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells, *Invest. Ophthalmol. Vis. Sci.* 46 (2005) 2107–2112 [PubMed: 15914630].

[22] H. Weissbach, F. Etienne, T. Hoshi, S.H. Heinemann, W.T. Lowther, B. Matthews, G. St John, C. Nathan, N. Brot, Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function, *Arch. Biochem. Biophys.* 397 (2002) 172–178 [PubMed: 11795868].

[23] R.J. Hung, C.W. Pak, J.R. Terman, Direct redox regulation of F-actin assembly and disassembly by Mical, *Science* 334 (2011) 1710–1713 [PubMed: 22116028].

[24] I. Dalle-Donne, R. Rossi, D. Giustarini, N. Gagliano, P. Di Simplicio, R. Colombo, A. Mizani, Methionine oxidation as a major cause of the functional impairment of oxidized actin, *Free Radic. Biol. Med.* 32 (2002) 927–937 [PubMed: 11978495].

[25] M. Kantorow, J.R. Hawse, T.L. Cowell, S. Benhamed, G.O. Pizarro, V.N. Reddy, J.F. Hejtmancik, Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress, *Proc. Natl. Acad. Sci. USA* 101 (2004) 9654–9659 [PubMed: 15199188].

[26] H.Y. Kim, V.N. Gladyshev, Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases, *Mol. Biol. Cell* 15 (2004) 1055–1064 [PubMed: 14699060].

[27] C.R. Picot, M. Perichon, K.C. Lundberg, B. Friguet, L.I. Szweda, I. Petropoulos, Alterations in mitochondrial and cytosolic methionine sulfoxide reductase activity during cardiac ischemia and reperfusion, *Exp. Gerontol.* 41 (2006) 663–667 [PubMed: 16677789].

[28] Y. Jia, Y. Li, S. Du, K. Huang, Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells, *Exp. Eye Res.* 100 (2012) 7–16 [PubMed: 22713178].

[29] Y. Li, W. Zhang, P. Li, K. Huang, Effect of streptozocin-induced diabetes mellitus on expression of methionine sulfoxide reductases and accumulation of their substrates in mouse lenses, *Exp. Eye Res.* 92 (5) (2011) 401–407 [PubMed: 21362417].

[30] L.O. Klotz, S.M. Schieke, H. Sies, N.J. Holbrook, Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts, *Biochem. J.* 352 (2000) 219–225 [PubMed: 11062076].

[31] A. Van der Vliet, M. Hristova, C.E. Cross, J.P. Eiserich, T. Goldkorn, Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermal carcinoma cells, *J. Biol. Chem.* 273 (1998) 31860–31866 [PubMed: 9822654].

[32] J. Zhou, H. Li, J. Zeng, K. Huang, Effects of peroxynitrite-induced protein tyrosine nitration on insulin-stimulated tyrosine phosphorylation in HepG2 cells, *Mol. Cell. Biochem.* 331 (2009) 49–57 [PubMed: 19424766].

[33] M.A. Marchetti, W. Lee, T.L. Cowell, T.M. Wells, H. Weissbach, M. Kantorow, Silencing of the methionine sulfoxide reductase A gene results in loss of mitochondrial membrane potential and increased ROS production in human lens cells, *Exp. Eye Res.* 83 (2006) 1281–1286 [PubMed: 16934804].

[34] L.A. Brennan, W. Lee, M. Kantorow, TXNL6 is a novel oxidative stress-induced reducing system for methionine sulfoxide reductase A repair of α -crystallin and cytochrome c in the eye lens, *PLoS One* 5 (11) (2010) e15421 [PubMed: 21079812].

[35] M.C. Martínez, R. Andriantsitohaina, Reactive nitrogen species: molecular mechanisms and potential significance in health and disease, *Antioxid. Redox Signal.* 11 (3) (2009) 669–702 [PubMed: 19014277].

[36] F.J. Lovicu, J.W. McAvoy, FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signaling, *Development* 128 (2001) 5075–5084 [PubMed: 11748143].

[37] L. Liaudet, G. Vassalli, P. Pacher, Role of peroxynitrite in the redox regulation of cell signal transduction pathways, *Front. Biosci.* 14 (2009) 4809–4814 [PubMed: 19273391].

[38] S. Bapat, A. Verkleij, J.A. Post, Peroxynitrite activates mitogen-activated protein kinase (MAPK) via a MEK-independent pathway: a role for protein kinase C, *FEBS Lett.* 499 (2001) 21–26 [PubMed: 11418104].

[39] B. Pesse, S. Levrand, F. Feihl, B. Waeber, B. Gavillet, P. Pacher, L. Liaudet, Peroxynitrite activates ERK via Raf-1 and MEK, independently from EGF receptor and p21Ras in H9C2 cardiomyocytes, *J. Mol. Cell. Cardiol.* 38 (5) (2005) 765–775 [PubMed: 15850570].

[40] M.K. Clements, D.W. Siemsen, S.D. Swain, A.J. Hanson, L.K. Nelson-Overton, T.T. Rohn, M.T. Quinn, Inhibition of actin polymerization by peroxynitrite modulates neutrophil functional responses, *J. Leukoc. Biol.* 73 (2003) 344–355 [PubMed: 12629148].

[41] R. Hernandez-Pando, T. Schon, E.H. Orozco, J. Serafin, I. Estrada-Garcia, Expression of inducible nitric oxide synthase and nitrotyrosine during the evolution of experimental pulmonary tuberculosis, *Exp. Toxicol. Pathol.* 53 (2001) 257–265 [PubMed: 11665849].